2 using System.Collections;
19 eqnStrings =
new string[]{
20 "xdot = (z-b)x - d y",
21 "ydot = d x + (z-b)y",
22 "zdot = c + a z - z^3/3 - (x^2+y^2)(1+ez) + f z x^3 "
26 new ParamBundle(
"default (scaled)",
new float[]{0.95f, 0.7f, 0.6f, 3.5f, 0.25f, 0.1f},
27 new Vector3(0.1f, 0f, 0f),
new Vector3(00.0f,00.0f,-00.8f), 3.37f),
28 new ParamBundle(
"default",
new float[]{0.95f, 0.7f, 0.6f, 3.5f, 0.25f, 0.1f},
29 new Vector3(0.1f, 0f, 0f)),
32 paramNames =
new string[] {
"a",
"b",
"c",
"d",
"e",
"f"};
47 public override void Function(ref
float[] x_in, ref
float[] x_out) {
49 x_out[0] = (x_in[2] - b) * x_in[0] - d*x_in[1];
50 x_out[1] = d * x_in[0] + (x_in[2] - b) * x_in[1];
51 x_out[2] = c + a*x_in[2]-x_in[2]*x_in[2]*x_in[2]/3f
52 - (x_in[0]*x_in[0] + x_in[1]*x_in[1])*(1+e*x_in[2])
53 + f * x_in[2] * x_in[0]*x_in[0]*x_in[0];
float[] eqnParam
parameters used in the equation
override void Function(ref float[] x_in, ref float[] x_out)
Evaluate the first order evolution of the attractor, given the current position.
Chaos eqn. Base class for all equations that define a 3D chaotic system.
override void SetParams(ParamBundle pb)
Sets the parameter bunlde to be used by the system.
Parameter bundle. Container class to hold the values for starting a chaotic system. Holds the parameters for the equations and the initial position and scale values.